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1. Introduction

The ditferential rotation of the celestiai bodies is a topical problem. Attempts
to explain this phenomenon have heen made by Kalifzin [1], Clement [2],
Rubashev [3], Menzel [4], Fessenkov and others. Lichkov [5] considers the
rotation of the Earth’s envelopes (nucleus, mantle, litosphere, hydrosphere
and atmosphere) with different angular velocities. The differential rotation
is clearly observed in the Sun, Jupiter, Saturn and in our Galaxy.

The purpose of this work is to provide a reasonable sojuticn to this
important problem, taking into consideration the fact that gravitation is the
principal factor in this phenomenon.

2. Description of Model

We first consider the celestial body in its earliest stage of evolution, repre-
senting it by the following idealized model. We assume that the body con-
sists of elementary layers with equal eccentricity. The body may be homo-
geneous or with increasing density toward the centre, according to any law,
The viscosity is neglected: we assume that at the extremely high tempera-
ture of the young celestial body the viscosity is equal to zero. The figure
of this ideally elastic body is determined by the action only of gravitation
and of the centrifugal force, and it is assumed to be an oblate ellipsoid of
rotation. Our model is very near to the structure of the stars from the
early spectral classes and that of neutron stars, described by Shklovskiy {6],
whose superfinid matter, deprived of viscosity, is of an ellipsoidal equilib-
rium contiguration.

*For open discussion
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3. Methods and Results

1. We use Newton's condition of equilibrium:

P—Ey: Fo, 7]
in its generalized form
{1) P—E,=F,co5¢,
or
@ E,+F,cosg—P,
(see Fig. 1}

where P is the weight of the polar column with length & (the polar semi-
axis), £, is the weight of the equatorial column with length a (the equato-
rial semi-axis), F, is the sum of the cenirifugal forces of the particies (ele-
mentary layers) of the equatorial column, E, is the weight of the column
with latitude ¢ and with length ¢, equal to the radius-vector of the ellip-
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Fig. 1

soidal surface of the body: c=ab/\/a‘3 sin? g-}-6? cos? ¢, F,cosqe isthe sum
of the radial components of the centrifugal forces of the elementary layers
of the column E,. The cross-section of both columns connecting the centre
of the celestial body with the pole and with any point on the surface with
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latitude 0°<@=90° is equal to unity, We must add that P, Ey F, E;and
F,cos ¢ are considered as secalar quantities.

We take the law of Legendre-Roche [8] for the density alteration in
its common form:

=0\l —u{x/RY] — for alteration of the average density of the compound
ellipsoids of the body;

es=0[l —f(x/R)| —for alteration of the surface density of the com-
pound ellipsoids, or of the compound elementary layers (envelopes) of the
body, where o is the density in the centre of the body,

At 2=0 and a=p the body is homogeneous. Giving different values
to the constants 2z, a and g we could represent an infinite number of celes-
tial bodies, from homogeneous ones to such with strongly increasing den-
sity to the centre, i.e. with an inner struciure similar fo Roche’s model.

We express the condition of equilibrium (2) of the celestal body by
the following integral equation:

£ [

fR Y
3) f G W8yl —alhie)old ~Alhie)') g | f wlh cos? ool L —B(kjc)] dh
4]

o

&
(48)axyofl — ol 9{bYlo{l — B yibVF
:fG 3}yl a;;g) el BT 4
Q
where x and y are the semi-axes of the attracting compound ellipsoid,
k is the distance from the centre of the body to the surface of the attracting
ellipsoid at latitude ¢ }zzxy/\/xﬂsingfp-{y?cos?qo, wy 18 the angular velo-

city of the elementary zonal layer at a distance % from the centre, with
latitude ¢. The expression

(4/3)mx%yel 1 — alh/c¥]=(4/3)mx%ye | —af y/b)7],

in equation (3), is the mass of the attracting ellipsoid and the expression
o[t —Blhfcyldh=¢l1 - B y/b)*]dy is the mass of the elementary layer in
columns ¢ and &. The equalifies hfe=ylb=x/a in the above expressions
follow from the equality of the eccentricity of the elementary ellipsoidal
layers (envelopes) of the body: V(@a— %) Ja? = \[(x*— %)/ 2,

In equation (3) the atiraction of the elementary layer in the columns
is expressed simply by Newton’s law of gravitation, but with sufficient
exactness, as the attracting mass of rapidly rotating celestial bodies is as-
sumed to be concentrated toward the centre, and the form of slowly rota-
ting celestial bodies is almost a spherical one. This is confirmed by the
accuracy of the final resuits.

The following proportion obviously exists with the homogeneous celes-
tial body :

(4) 33‘“_6(4;3)34131}9(1‘,_-@;;:‘-’
wix  GABxPyol —a)x¥

which expresses the equality of the ratios of the centrifugal and gravita-
tional accelerations at the surface and at any distance to the centre of the
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body. Here the cenirifugal force and the attraclion are changing linearly to
the cenire, where they are equal to zero. Proportion {4) expresses the inuer
conditicn of equilibrium of the homogeneous celestial body.

For a celestial body presented by our idealized model with increasing
density to the centre, according to Legendre-Roche’s law, however, propor-
tion (4) should {ake the form

(5)

via G{413)za%b0(] ~ a)fa?
IR e i SV
I GfS)mrtyoll —atxja)fix?

£
Lrs
as for the imner equilibrium of such a body the centrifugal force and the
attraction to the centre must also change with the distance to an equal
degree. Here w,>>w;.

Proportion (4) appears as a particular case of proporiion (5). Actually,
at 2=0 and y=xb/a we have wy=w;

At latitude ¢ proportion (5) has the following form:
« > S (({4]3)ma ol —a)fe?
wihcosy  Gi4)3wxtyoll - olkfc)|h2

L]

{6)

whete w, is the angular velocity of the elementary zonal fayer on the surface
of the body, with latitude 4.

From the equalities (a?—82)/a?=(x2 -3?)/x%, c=ab/\Ja?sin2¢ +b,cost e
h=xy/Nx? sin? g+ y& cos? p and proportion (8) we have : x%== y2a%/b®, k%= %252,
y=hbjc and w}=wl(c*—ak®){{c"—ac®).

Substituting the above values of x2, 22, y and ! in equation (3}, followed
by simpiification and integration, we obtain

(7 Gy 3)“‘9;5_9(1 )

I 2 "
+ 9}3;{?2 Coszfp = Q{ﬂq}ﬂ;w) s )

where o{l —a) is the average density of the body.
Introducing the mass of the celestial body, we obtain

(8) GM{C—I—w:iCQ cos® = GM/b,
from where

——
(9) t, =2rCCoSgp VZE’MCWEJ')' ’

where {, =2n/w, is the rotational period of the elementary zonal layer at
a distance ¢ from the centre, at latitude q.
2. The same result (9) is also obtained from the equation

(10) Vfﬂ —i"UqJ:VF:

which at V,--const describes an equipoteniial surface. Here V, is the inner
gravitational potential, in our model, of a point on the surface with latitude
¢, i e. the work for the transport of unit mass from the centre fo the sur-
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face with latitude ¢ which is different from f = dh, V, is the inner gra-

vitational potential of the pole which is also different from f@dy, and

U, is the potential of the cenirifugal force at latitude ¢, at the correspond-
ing acceleration of the rotfation to the centre.

Equation (10) which aisc expresses the condition of equilibrium of the
celestial body, in our model, can be presented in the following integral form:

£

(05 f om;ahx@idﬂ —alhiel] gp oy f wih cos®p dh

0

_ [ Gi3)mrtyell —a( yjb))
‘f ¥ @

From Equation (11) we obtain, in a similar way, formula (9).

Equations (2) and (10} are equivalent. Newton’s concept of “weight” of
the column, expressed as £, .| -F,cosq, corresponds to the inmer potential
at the same latitude, namely: V,+U,1

3. In our model, Newton’s condition of equilibrium (2} can be expressed
as follows:

(2') Eglnt+F,cosp/n- Pla,
where #>1. At #—co we can write

b GMe/nyg, | dnc cost plefnip,  GM(bjr)p,
(2 ) { ._:.'_:[ _19_. _!_ tglp }F_ =i, (!lell X
o

or (21 ) GM]c+-4=%c? cost pf: = GM/b,
from where formula (9) is directly obtained.

Fermula (9) describes the differential rotation of the celestial bodies
in our model,

4. Particular Cases of the Law (9)

At p: .0° formula (9) takes the form

ahb
(12) to=2ma Jf b .
Formula (12} can also be written as:
{a—bYb—F/E,

whete F=wla and E=GM/a? i.e. the second ilattening of the celestial
body is equal to the ratio of the centrifugal and gravitational accelerations,
measured at the equator,
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Similar results had been obtained by.

Newton: (2—b)/a=5F/4E and

Huygens: (a--6)/a=F/2E |7].

It is very important to note here that formula (12) can be obtained
directly from the proportion

GM/rt— GMfa® = kala,

at k=1 and 2=ab, where r is the radius of the ideally elastic celestial

body at w=0. The relation r=yab is a consequence from Hooke’s law and
can be demonstrated experimentally, by axial rotation of an elasiic and
isotropic sphere,

At {@a—b)fa: . 1/2 formula {12) takes the form

(14) {,=2na .I/_?’Vf

~ Formula (14} is the mathematical expression of Keplet’s third law, for
circular orbits. Actually, the equatorial particles of some siars from the
early spectral classes 5, 4 and F, which have very rapid axial rotation and
in which the centrifugal force at the equator is almost equal to the attrac-
tion, are rotating as small planets, according to (14). The flattening (a—&)/a
of these stars must be almost equal to 1/2.

5. Verification of the Resulis

At the following values of the mass and semi-axes of ihe Earth (considered
ideally elastic, as a whole): M 598X 10% g, a-6378.245X105¢cm, and
5-=6356.863X 10° cm (the ellipsoid of Krassovsky), fortmula (12) gives the
following value for the rotational period of the Earth (more exactly for the
period of the earth-crust): f=87384 5—-24.27 h, with a relative error of
about 1.4 per cenf. At the same values of M, ¢ and & of the Earth, New-
ton’s theorem gives / 27.18 h, and that of Huygens gives £=17.19 h.

Formula (12) gives the rotational periods of the other planets as well,
at the cotrect values of their masses and semi-axes. [i appears to be the
most exact, compared with the similar results of Newton, Huygens, Claitaut
{7} and that of Radau — Darwin (9] which is quite unfit for the planets of
the Jupiter type.

As the density of the Earth increases toward the centre, where the
temperature is higher and the viscosity lower, we should have, according to
(12} an acceleration of the rotation of ils inner layers. This is in agreement
with the conclusions of Munk and Macdenald [10] and of Lichkov |5

At the following values for the mass, the equatorial radius and the
rotational period at the equator of the Sun, namely: M=199x10% g,
@=695500% 10% cm, and £,=25X86164s, formula (12) gives the following
value for the polar radius of the Sun: &=-6395485 X 10° cm. At these values for
a and b we obtain {g—#&)/a=2.15X 1075, Ii is interesfing to note that our
theoretically determined value for the oblateness of the Sun is of the same
order as that of Dicke: 5 10— {I1), found experimentaily.
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At the following value for the density in the centre of the Sun:
0=120 g/cm? [4], formula (12) gives a significant acceleration of the rota.
tion of the inner layers of the Sun. This is in agreement with the conclys-
ions of Dicke [11], Roxburgh [12], Fessenkov and other scientists that the inner
layers of the Sun rotate more rapidly than the outer layers,

The mechanical energy of the differentially totating layers of the celes-
tial body is no doubt turning, at the friction between the layers, into ther-
mal and other kinds of energy. This enormmous source of energy must be
taken into consideration in {ihe solution of some astrophysical and plane-
tary problems. For example, the total thermal flux from Jupiter is 2.5 times
that which the planet receives from the Sun {from measurements made by
Piotieer 10). This enigmatic phenomenocn can be explained by the differen-
tial rotation ot Jupiter, according to (9} and (15).

At the above values for the mass and semi-axes of the Sun, represented
by our ideal model, formula (9) gives the following resulis for ihe rotational
periods, in days, of the zonal layers of the photosphere of the Sun:

Table |l

@ 0° 30° 50° 70° 807 85°
b 25.0 24.9 24.8 24.5 22.6 17.5

As can be seen from the above Table, for a celestial body whose figure
is an ideal ellipsoid, with viscosity equal to zero, formula (9) gives a “polar
acceleration” of rotation. Actually, analyzing the line profiles of stars on the
upper main sequence, Stoeckly [2] has concluded that these stars rotate
more rapidly at the pole than al the equator. This is in agreement with our
theoretical results, as the viscosity of these slars, which have a very high
temperature, is negligible and their figure is almost anideal ellipsoid of
rotation.

On the other hand, as also noted by Stoeckly, stars on the lower main
sequence, such as the Sun, possess an “equatorial acceleration”. This pheno-
menon, observed also at the Sun, Jupiter and Saturn [1, 13, 4} could be
explained by the action (influence) of the viscosity, a factor which should
be taken here into account. The influence of the viscosity is, no doubt,
reflected in the change of the periods of rotation of the zonal layers, in the
change of the equipotential surface of the body and, consequentily, in the
change of the figure of celestial body.

Taking into account the integral influence of the viscosity, formula (9)
should be written in the following form, for the older celestial bodies:

£
{15) tp=:25L; COS @ VG‘ME:;.JBJ .

where ¢, is the radius-vector of the deformed figure of the celestial body
and b=C0Matlf(GMEL+ 4n%?), from formula {12),
Equation (15) may be written as foliows:

(16} 472%bh cos® pcd — GMticx -+ GMtfpb—-O,
where the unknown quantity is ¢,
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Taking the values of Kerrington {131 for the observed rotational periods
of the sun-spots and zonal layers on the photosphere of the Sun, in days,
and, at the corresponding latitudes, calcuiate the value of ¢, by (16) and
the difference c¢—cy, in kilometres, where c=ab/Va%sin?g+H2cos2p is the
radfus-vector of the ideal ellipsoidal surface of the photosphere, we obtain
the following results:

Table 2
@ o0 ige ‘20“ |30° 40° a0° 50° 70° 80° 85° o0°
te 25.0 262 | 256 | 263 | 273 | 286 | 302 | 321 | 343 | 35 co
C—Cx 0.0 02 | 06 | 1.13]| 178] 14 .32 .76 032 0.18| 0.0

As can be seen from Table 2, the figure of the photosphere of the Sun
is outlined as a very slightly deformed ellipsoid with maximum difference
of c—cy~1.78 km at ~4-40° from the ideal ellipsvidal surface.

As we see, the observed “equatorial acceleration” of the Sun, which is
also a puzzle, comes as z direct consequenice of {he deformation of the
equipotential surface of the photosphere, caused by the viscosity.

The resulis of the calculations of ¢, by (16) and the difference ¢—cy,
in metres, for the Earth (earth-crust), with the accepied values of M, g, &
and #,—:£,—=86164 5, are piven in Table 3.

Table 3
@ ’ 0 | 100 | 200 | 300 | a0 | 450 | s0° | 800 | 700 | 80> | o00°
tp =ty ty ty ty £ t Ly ty £y fo p
c—ex | 00 30| 135 274 28 |28 |28 |20 |12 | 17| 00

Table 3 shows that the common figure of the Earth is cutlined as a
slightly deformed spheroid with maximum difference ¢—c,~29 metres at
~ +45° from the ellipsoidal surface. As is well known, the average devia-
tion of the so-called normal spheroid of Clairaut from the surface of the
twao-axial ellipsoid of rotation, with the same semi-axes, is about 20 m [14].

All the above calculations are done in the system of units CGS.

The stratification {formation of bigger zonal layers) of the celesiial
body in the course of evolution, from the surface fo the centre and from
the equator to the pole is due, as we assume, to the viscosity and tc the
tendency of the particies of the body to rotate according to law (8). Such
zonal layers are clearly seen in the atmosphere of Jupiter and Saturn, rotat-
ing with difierent angular velocities. In the Earth’s upper atmosphere we
also cbserve zonal layers and “jet streams”, circulating from west io the
east with a greater angular velocity,

Thanks to the great viscosity, the particles of the Earil’s crust are
rotating with equal (or almost equal) anpular velocity. In the atmosphere of
the Rarth and that of the other planeis, bowever, where the viscosity is
niuch smatler, we have differential rotation. ln the upper stmosphere of the
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Earth, where the specific factors in the low atmosphere {reliei, unequal
heating of the Earih's surface on land aud sea, at the equator and af the
poles} do not play any role, we observe zonal winds of high velocity. It
has been discovered by artificial satellites that the atmosphere at a height
of 200- 300 km rotates 1.3 times more rapidly than the Earth’s crust [15].
A similar phenomenon is observed in the solar atmosphere [13]. We also
know that the velocity of the uninterrupted general transport of the air and
vapour masses from west to the east is higher than the velocity of the
Earth’s crust rotation. All {hese phenomena cannot be explained by the
thermal factor only. Obviously, at the regular rotation of the zonal layers
in the upper atmosphere of the planets and the stars, according to (9) and
{15), the main role is played by gravitation, as at the orbital circulation of
the planets, according to Kepler’s laws.
* Formnla {15) can be writien as follows:

3 GMic,—b)
(lb) V‘P= V -J-Y— i‘;{;——) ¥
where V; is the linear velocily of the zonal layers and zonal winds,

v == V;——465 mfsX cos .

relative

6. Conclusion

The result (9), obtained by different methods of research, which very well
describes the differential rotation of the young celestial bodies, can be
interpreted as a common law operating under ideal conditions, in which
gravitation only is playing the main role. The particular cases (12)
and (14) of this law confirm iis veracily and importance, Formula (12}
is most simple and most exact, compared with the similar classical and con-
temporary results. The precision with which it gives the rotational period
of the Earth can be explained by the great elasticity of the Earth, as
a whole.

The result (15), where the influence of the viscosity is taken into ac-
count, could be successfully used, as we have shown, for determination of
the common figure of the older celestial bodies, and for the explanation of
their specific differential rotation.

We could give by means of (9) and (15) or (16) a qualitative explana-
tien of the general circulation and the dynamics of the upper atmosphere
of the Earth and other planets, assuming that the flattening (a—é)/a of
their compound envelopes increases with the height,

The experts in this subject could see, I believe, the significance of the
results obtained in astrophysics and geophysics,
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O muddepenuuassrom BpaieHuu U QUIype HeGECHBIX Ten
. P. Tuaues

(Pesome)

B sroii crarpe paercst rTeoperuuecikoe 000CHOBAHHE FUIOTE3H aBTOPA 0 AH(-
(peperumManbHOM BpallleHnd HeGecHEIX Tey, onyOJHKOBAHHON B JKypHane ,Ac-
TpoHommite Haxpuxren“ npodeccopom Huxoma Cr. Kanuuunsiv [1]. [Ipemso-
MCEHO OPHTMHANbHOE pemieHde 1poGaembl AupdepeHManbHOro Bpalesns
Gurype neGecubix Ten. Chopmynuposansbiil 061uit 3aKos neficTByeT npu Hie-
aJIbHBIX YCAOBHAX. TeM He MeHee 5TOT 3aKOH MOBOJBHO XOPOLIO ONHUCHIBAET
HaOmopaemble sBJeHUs B peanbHON npupone. [lepsrit wacTublil caywail sToro
3aKoHa CpaBHMBaeTCA ¢ Nomo6HBIMH pesynbraramd HeloTona, [olirenca u
Kxnepo. Bropoit yacTHbiii cuyuall sBAS€TCH HACHTHYHBIM C TPETHHM SaKOHAM
Kennepa nnst kpyroseix opGur.
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